您好,欢迎访问本站博客! 控制台  查看权限
  • 如果您觉得本站非常有看点,那么赶紧使用Ctrl+D 收藏吧
  • 网站所有资源均来自网络,如有侵权请联系站长删除!

OD破解基本的认识

不管是写注册机还是破解补丁,或者破解一些小软件,加密解密技术多少得了解一点的。尤其是程序猿,汇编不但要掌握,还要精通!你自己做开发的时候自然不希望自己的东西被破...

除了笑之外,这里可用的特征还有纹身,性别等可以考虑。朴素贝叶斯把类似“笑”这样的特征概率化,构成一个“人的样貌向量”以及对应的“好人/坏人标签”,训练出一个标准的“好人模型”和“坏人模型”,这些模型都是各个样貌特征概率构成的。这样,当一个品行未知的人来以后,我们迅速获取ta的样貌特征向量,分布输入“好人模型”和“坏人模型”,得到两个概率值。如果“坏人模型”输出的概率值大一些,那这个人很有可能就是个大坏蛋了。

决策树是怎么办的呢?决策树可能先看性别,因为它发现给定的带标签人群里面男的坏蛋特别多,这个特征眼下最能区分坏蛋和好人,然后按性别把一拨人分成两拨;接着看“笑”这个特征,因为它是接下来最有区分度的特征,然后把两拨人分成四拨;接下来看纹身,,,,最后发现好人要么在田里种地,要么在山上砍柴,要么在学堂读书。而坏人呢,要么在大街上溜达,要么在地下买卖白粉,要么在海里当海盗。这些个有次序的特征就像路上的一个个垫脚石(树的节点)一样,构成通往不同地方的路径(树的枝丫),这些不同路径的目的地(叶子)就是一个类别容器,包含了一类人。一个品行未知的人来了,按照其样貌特征顺序及其对应的特征值,不断走啊走,最后走到了农田或山上,那就是好人;走到了地下或大海,那就是大坏蛋。(这是个看脸的例子,但重点不是“脸”,是“例子”,这真的只是个没有任何偏见的例子)。可以看出来,两种分类模型的原理是很不相同。

2.理论基础——条件概率,词集模型、词袋模型


  • 条件概率:朴素贝叶斯最核心的部分是贝叶斯法则,而贝叶斯法则的基石是条件概率。贝叶斯法则如下:

这里的C表示类别,输入待判断数据,式子给出要求解的某一类的概率。我们的最终目的是比较各类别的概率值大小,
而上面式子的分母是不变的,因此只要计算分子即可。仍以“坏蛋识别器”为例。我们用C0表示好人,C1表示坏人,
现在100个人中有60个好人,则P(C0)=0.6,那么P(xy|C0)怎么求呢?注意,这里的(xy)是多维的,因为有
60个好人,每个人又有“性别”、“笑”、“纹身”等多个特征,这些构成Xy是标签向量,有60个0和40个1构成
这里我们假设X的特征之间是独立的,互相不影响,这就是朴素贝叶斯中“朴素”的由来。在假设特征间独立的假设下

深入理解朴素贝叶斯(Naive Bayes)

朴素贝叶斯是经典的机器学习算法之一,也是为数不多的基于概率论的分类算法。朴素贝叶斯原理简单,也很容易实现,多用于文本分类,比如垃圾邮件过滤。该算法虽然简单,但是...

《数据之美》手记

数据之美“数据实际上已经是下一代计算机应用的真正核心。本书中,各位业界精英描述了在他们的项目中如何以全新的方式来驾驭数据的力量。对于任何对数据的未来和问题的解决...